Identify caterpillars and, if possible, parasitoid (Sabah, north Borneo)

Identify caterpillars and, if possible, parasitoid (Sabah, north Borneo)

We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Someone on Twitter posted some photos yesterday of a lump of mud that, when knocked off a chair by accident, revealed a number of caterpillars:

I've uploaded one of the photos below. The assumption (which seems reasonable, but I suppose isn't certain) is that they were left there by a parasitoid.

Can anyone identify the caterpillars, confirm whether they are likely to have been left by a parasitoid and if so identify a likely culprit? The sample was from a forested area in Sabah, northern Borneo; I've requested a size from the person who posted the photos.

These are wasp larvae, but likely not parasitoids. They are the larvae of predatory Sphecid or Crabronid wasps, both of which build mud nests, generally provisioned with spiders or other arthropods that have been killed (and by some wasp species, dismembered) or paralyzed by the female (mother) wasp. It looks like one or two of them may be pupae (closer to eclosing--"hatching"--as adults) instead of larvae. If kept carefully they can be raised to adulthood for identification (at least by an expert familiar with the aculeate, or stinging, wasp fauna of that part of the world).

Effect of habitat transformation from grassland to Acacia mangium plantation on dung beetle assemblage in East Kalimantan, Indonesia

Clean Development Mechanism afforestation often involves the creation of fast growing tree plantations on non-forest lands. To estimate the possible impacts of afforestation on the biodiversity of local species, we compared the diversity of dung beetles collected using baited pitfall traps placed in grasslands, plantations of Acacia mangium, and intact natural forests in East Kalimantan, Indonesia. The species richness in plantations was higher than that on grasslands but lower than that in intact natural forests. Ordination analysis revealed that the structures of beetle assemblages in plantations were intermediate between intact natural forests and grasslands. However, the indicator species for the intact natural forests were never or rarely seen in the plantations. These results suggest that afforestation increases the local native diversity of dung beetles but that plantations are not readily colonized by the indicators of intact natural forests. Conversely, it is suggested that afforestation decreases the abundances of two grassland specialists.

This is a preview of subscription content, access via your institution.


Penyerpihan habitat semulajadi boleh memudaratkan sesuatu spesies jika ianya gagal menyeberangi sempadan bukan habitat bagi mencapai lokasi baharu yang seterusnya boleh mengurangkan fungsi habitat semulajadi hutan yang bersambungan. Habitat yang bersambung adalah penting bagi meningkatkan julat pergerakan spesies ketika perubahan iklim dan oleh itu, adalah amat penting untuk mengetahui faktor-faktor yang mungkin menghalang pergerakan mereka dalam landskap yang telah diubahsuai oleh manusia. Di kawasan tropika, perkembangan pesat pertanian telah menyebabkan banyak hutan hujan semulajadi menjadi habitat yang terserpih, dan ia akan menyebabkan potensi sesuatu spesies yang mempunyai kepelbagaian biologi yang tinggi dan amat bergantung terhadap habitat hutan hujan tersebut menjadi terasing. Kebarangkalian untuk menyeberangi sempadan bukan habitat adalah penting dalam menentukan penyebaran spesies di kawasan landskap hutan hujan yang terserpih dan oleh itu, penyelidikan tentang pergerakan spesies di kawasan hutan hujan dan sempadan ladang kelapa sawit di Borneo dengan menggunakan taksa kupu-kupu famili Nymphalidae sebagai model organisma akan dikaji. Sebanyak 1666 individu dari 65 spesies kupu-kupu telah ditandai dan sebanyak 19 peratus (100/527) adalah individu yang telah melintasi sempadan bukan habitat. Sesetengah spesies kerap melintasi sempadan bukan habitat dan pergerakan mereka adalah dari kawasan hutan hujan ke ladang kelapa sawit. Walaubagaimanapun, penyeberangan sempadan bukan habitat dari hutan ke ladang kelapa sawit bagi spesies kupu-kupu yang berjaya ditangkap semula yang telah dikesan adalah kurang daripada 50 peratus (12/28) dan ianya dikuasai oleh spesies kupu-kupu bersaiz kecil yang mempunyai tumbuhan perumah larva di kawasan ladang kelapa sawit. Secara amnya, ladang kelapa sawit boleh bertindak sebagai penyekat kepada pergerakan sesuatu spesies yang bergantung penuh terhadap habitat hutan hujan (cthnya spesies yang mempunyai keperluan khusus kepada habitat hutan hujan untuk pembiakan) dan kepentingan untuk memastikan habitat hutan terus bersambung bagi memulihara spesies-spesies hutan hujan wajar ditonjolkan.

Across the globe , natural habitats are being fragmented by human activities with detrimental consequences for biodiversity (Canale et al. 2012 , Melo et al. 2013 , Almeida-Gomes et al. 2016 ). Habitat connectivity is important for population persistence (Hanski 1999 ), and species are predicted to shift their ranges in response to climate change (Chen et al. 2011 ), making it important to understand the permeability of fragmented landscapes (Hodgson et al. 2011 ) and to maintain landscape connectivity (Martensen et al. 2008 ). Loss of connectivity is of particular concern in tropical regions (Wade et al. 2003 ) because rain forests are global hotspots for biodiversity but have already experienced extensive deforestation (Gibbs et al. 2010 ). For example, in parts of Southeast Asia, fragmentation of lowland forest is primarily due to the expansion of large-scale oil palm plantations (Elaeis guineensis Jacq.) (Gaveau et al. 2014 ), which can lead to the isolation of populations of forest-dependent species in the remaining areas of forest within these landscapes (Scriven et al. 2015 ).

The ability of species to move between habitat patches depends on species dispersal ability, a complex process that integrates the physical costs of movement through preferred habitat (Bonte et al. 2012 ), the response of species to habitat boundaries (Kallioniemi et al. 2014 ), and the permeability of the matrix (Perfecto & Vandermeer 2002 ). For tropical forest species to disperse successfully through fragmented habitats, they need to cross forest–non-forest edges, which are frequently avoided by forest specialists (e.g., Laurance 2004 , Watson et al. 2004 ). Thus, an important component of dispersal involves species behavior upon reaching the forest edge, and responses to habitat boundaries affect emigration rates from suitable habitat (Ries & Debinski 2001 ). Boundary crossing by individuals (e.g., butterflies) may be part of a random walk or movement (e.g., see Schultz et al. 2012 ), although it is also likely that crossing may represent an active decision by an individual to leave areas of suitable habitat, and so the likelihood of crossing an edge may be an indicator of dispersal ability. However, leaving areas of suitable habitat may not always indicate longer distance dispersal (see review by Stevens et al. 2010 ), but boundary crossing is a prerequisite for individuals moving through highly fragmented landscapes.

While some tropical forest species avoid forest edges (Hansbauer et al. 2008 ), there is little information on the variation in boundary crossing among species. In temperate regions, species have been shown to recognize boundaries between suitable and unsuitable habitat and can actively control their rate of boundary crossing (Conradt & Roper 2006 ) and modify their movement behavior in response to boundaries (e.g., birds: Rodríguez et al. 2001 , butterflies: Schultz & Crone 2001 , bush crickets: Berggren et al. 2002 , and salamanders: Rittenhouse & Semlitsch 2006 ). Several temperate studies of butterflies have also reported species-specific differences in boundary-crossing ability (e.g., Haddad 1999 , Ries & Debinski 2001 , Kallioniemi et al. 2014 ), and differences among species in their overall levels of activity can also affect rates of boundary crossing (Mair et al. 2015 ). Thus, current evidence implies that tropical species may vary in their sensitivity to habitat boundaries, and hence to rain forest fragmentation effects, but data quantifying movement of species across rain forest boundaries and how ecological traits influence edge-crossing behavior are lacking.

The movement of individuals across a habitat boundary is predicted to follow productivity (Rand et al. 2006 ) and population source-sink (Pulliam 1998 , Tscharntke et al. 2005 ) gradients. In both tropical (e.g., Lucey & Hill 2012 ) and temperate (e.g., González et al. 2015 ) regions, there is evidence of spillover from natural habitats into managed systems, although spillover can also occur in the opposite direction (Barcelos et al. 2015 ). Studying net movement of individuals across rain forest-agricultural boundaries is important for understanding species diversity and ecosystem functioning for example, if forest pests move into plantations and reduce crop yields or if crop-dwelling predators move into forests and reduce biodiversity (Rand et al. 2006 ).

Conversion of rain forest to oil palm agriculture reduces tropical biodiversity (Fitzherbert et al. 2008 ) and remaining tracts of rain forest become isolated within agricultural landscapes (Scriven et al. 2015 ). In order to develop effective conservation management, there is a pressing need to determine the permeability of forest-oil palm plantation boundaries to forest-dependent species (i.e., species that are dependent on forest habitat to breed). If forest species are unable to cross forest boundaries, then plantations will form barriers to the movement of individuals among forest patches, thereby reducing habitat connectivity for these species. We investigated the movement of species at forest-oil palm plantation boundaries and tested the hypotheses that net flow of individuals is from forest into plantations, and that plantations are barriers to movement of many forest-dependent species hence, we predicted fewer overall movements of species from forest into plantations compared with movements within forest. In addition, we predicted that plantations will be less of a barrier to species whose larval host plants occur within the plantation, and we also examined whether other species traits (forewing length, larval host plant specificity, and geographic range size) affected boundary crossing. We selected these traits for study because they have previously been shown to affect the sensitivity of tropical butterfly species to forest fragmentation (Benedick et al. 2006 ). Our study taxon was nymphalid butterflies, which are diverse (Benedick et al. 2006 ), relatively mobile (Marchant et al. 2015 ), and many species are dependent on closed-canopy forest (Hill et al. 2001 ). Butterfly distributions have also been shown to correlate well with observed patterns in other taxa (Schulze et al. 2004 , Thomas 2005 , Gardner et al. 2008 ), and so butterflies are considered sensitive ecological indicators of environmental changes (Cleary 2004 ).


Aarssen, B. G. K. van, Hessels, J. K. C., Abbink, O. A. & de Leeuw, J. W. (1992). The occurrence of polycyclic sesqui- tri- and oligoterpenoids derived from a resinous polymeric cadinane in crude oils from Southeast Asia. Geochim. Cosmochim. Acta 56: 1231 – 1246.

Aarssen, B. G. K. van, de Leeuw, J. W., Collinson, M., Boon, J. J. & Goth, K. (1994). Occurrence of polycadinene in fossil and recent resins. Geochim. Cosmochim. Acta 58: 223 – 229.

Akande, S. O., Ogunmoyero, I. B., Petersen, H. I. & Nytoft, H. P. (2007). Source rock evaluation of coals from the Lower Maastrichtian Mamu Formation, SE Nigeria. J. Petrol. Geol. 30: 303 – 324.

Angiosperm Phylogeny Group (APG) (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. APG IV. Bot. J. Linn. Soc. 181: 1 – 20.

Antal, J. S. & Awasthi, N. (1993). Fossil flora from the Himalayan foot-hills of Darjeeling district, West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist 42: 14 – 60.

Appanah, S. & Chan, H. T. (1981). Thrips, the pollinators of some dipterocarps. Malaysian Forester 48: 234 – 252.

Ashton, P. S. (1964). Ecological Studies in the Mixed Dipterocarp Forests of Brunei State. Oxford For. Mem. 25. Clarendon Press, Oxford.

Ashton, P. S. (1969). Speciation among tropical forest trees: some deductions in the light of recent evidence. Biol. J. Linn. Soc. 1: 155 – 196.

Ashton, P. S. (1979). Dipterocarpaceae. In: M. D. Dassanayake & F. R. Fosberg (eds), A revised Handbook to the Flora of Ceylon, Vol. 2: 166 – 196, reprinted 1980 in Vol. 1: 364 – 423. A. A. Balkema, Rotterdam.

Ashton, P. S. (1982). Dipterocarpaceae. In: C. G. G. J. van Steenis (ed.), Flora Malesiana Series I, 9, pt 2: 237 – 552. Martinus Nijhof, The Hague.

Ashton, P. S. (1984). Biosystematics of tropical forest plants: a problem of rare species. In: W. F. Grant (ed.), Plant Biosystematics, pp. 497 – 518. Academic Press, Toronto.

Ashton, P. S. (1988). Dipterocarp biology as a window to the understanding of tropical forest structure. Annual Rev. Ecol. Syst. 19: 347 – 370.

Ashton, P. S. (2002). Dipterocarpaceae. In: K. Kubitzki (ed.), The Families and Genera of Vascular Plants. IV. Flowering Plants. Dicotyledons. Malvales, Capparales and Non-betalain Caryophyllales, pp. 182 – 197. Springer, Berlin.

Ashton, P. S. (2014). On the Forests of Tropical Asia: lest the memory fade. Royal Botanic Gardens, Kew & Arnold Arboretum University.

Ashton, P. S. (2018). What future for Asia’s lowland tropical evergreen forests? J. Tropic. Forest Sci. 30: 418 – 423.

Ashton, P. S., Givnish, T. J. & Appanah, S. (1988). Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Amer. Naturalist 132: 44 – 66.

Ashton, P. S. & Gunatilleke, C. V. S. (1987). New light on the plant geography of Ceylon. 1. Historical plant geography. J. Biogeogr. 14: 249 – 285.

Aubréville, A. (1976). Essai d’interpretation nouvelle de la distribution des Diptérocarpacées. Adansonia 12: 205 – 210.

Aubriot, X., Soulebeau, A., Haevermans, T., Schatz, G. E., Cruaud, C. & Lowry, P. P. (2016). Molecular phylogenetics of Sarcolaenaceae (Malvales), Madagascar’s largest endemic plant family. Bot. J. Linn. Soc. 182: 729 – 743.

Awasthi, N. (1969). Revision of some Dipterocarpaceous woods previously described from the Tertiary of south India. Paleobotanist 18: 226 – 233.

Awasthi, N. (1974). Occurrence of some dipterocarpaceous woods from the Cuddalore Series of south India. Palaeobotanist 21: 339 – 351.

Awasthi, N. (1994). Dipterocarpus in the Indian subcontinent: Past, present and future In: K. C. Khoo & S. Appanah (eds), Proceedings of fifth round-table conference on dipterocarps, Chiang Mai (Thailand), pp. 138 – 156. FRIM, Kepong.

Awasthi, N. & Srivastava, R. (1992). Additions to the Neogene flora of Kerala Coast, India. Geophytology 20: 148 – 154.

Bancroft, H. (1933). A contribution to the geological history of the Dipterocarpaceae. Geol. Fören. Förhandl. 55: 59 – 100.

Bancroft, H. (1935). Some fossil dicotyledonous woods from Mont Elgon, East Africa. Amer. J. Bot. 22: 164 – 183.

Bayer, C. (2002). Sarcolaenaceae. In: K. Kubitzki (ed.), The Families and Genera of Vascular Plants. IV. Flowering Plants. Dicotyledons. Malvales, Capparales and Non-betalain Caryophyllales, pp. 345 – 352. Springer, Berlin.

Beauchamp, J., Lemoigne, Y. & Petrescu, J. (1973). Age des différents niveaux du complexe volcanique des Trappes à Debré-Libanos (Province du Shoa, Ethiopie) d’après l’étude des Paléoflores. Compt. Rend. Hebd. Séances Acad. Sci., Sér. D. 276: 1409 – 1412.

Bera, S. K. (1990). Palynology of Shorea robusta (Dipterocarpaceae) in relation to pollen production and dispersal. Grana 29: 251 – 255.

Bird, M. I., Taylor, D. & Hunt, C. (2005). Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quatern. Sci. Rev. 24: 2228 – 2242.

Blasco, F. & Legris, P. (1971). Les migrations de flore en Inde et l’évolution. Compt. Rend. Soc. Savant de Toulouse.

Blume, C. L. (1825). Bijdrage tot de flora van Nederlandsche Indiȅ, Vol. 1. Lands Drukkerij, Batavia.

Böhme, M. et al. [13 authors] (2013). Na Duong (northern Vietnam) — an exceptional window into Eocene ecosystems from Southeast Asia. Zitteliana Ser. A 53: 121 – 167.

Boureau, E. (1957). A propos de la la repartition paléogéographique des Dipterocarpaceae fossiles. Compt. Rend. Sommaire Séances Soc. Biogéogr. (suppl.) 296 – 297: 46 – 47.

Brandis, D. (1895). An enumeration of the Dipterocarpaceae, based chiefly upon the specimens preserved at the Royal Herbarium and Museum, Kew, and the British Museum and remarks on the genera and species. Biol. J. Linn. Soc. 31: 1 – 148.

Brearley, F. Q., Proctor, J., Suriantata, Nagy, L., Dalrymple, G. & Voysey, B. C. (2007). Reproductive phenology over a ten year period in a lowland evergreen rain forest in Central Borneo. J. Ecol. 98: 828 – 839.

Candolle, A. P. de (1824). Tiliaceae. In: Prodromus systematis naturalis regni vegetabilis, Vol. 1: 503 – 518. Treuttel et Würtz, Paris.

Cannon, C. H., Morley, R. J. & Bush, A. B. G. (2009). The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and hightly sensitive to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106: 11188 – 11193.

Carlquist, S. (1964). Pollen morphology and evolution of Sarcolaenaceae (Chlaenaceae). Brittonia 16: 231 – 254.

Chan, H. T. (1981). Reproductive biology of some Malayan dipterocarps. III. Breeding systems. Malaysian Forester 44: 28 – 36.

Chatterjee, S. & Scotese, C. R. (1999). The breakup of Gondwana and the evolution and biogeography of the Indian Plate. Proc. Indian Natl. Sci. Acad., B. 65: 397 – 425.

Chatterjee, S., Goswami, A. & Scotese, C. R. (2013). The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research 23: 238 – 267.

Chen, Y. Y., Sakake, A., Sun, I.-F., Kosugi, Y., Tani, M., Numata, S., Hubbell, S. P., Fletcher, C., Supardi, M. N. N. & Wright, S. J. (2018). Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia. Research Article: J. Ecol. 106: 586 – 598.

Chiarugi, A. (1933). Legni fossili della Somalia italiana. Palaeontogr. Ital. 32 (sup. 1): 97 – 167.

Coetzee, J. A. & Muller, J. (1984). The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Missouri Bot. Gard. 71: 1088 – 1099.

Cole, J. M., Abdelrahim, O. B., Hunter, A. W., Schrank, E. & Mohd Suhaili Bin, I. (2017). Late Cretaceous spore-pollen zonation of the Central African Rift System (CARS), Kaikang Trough, Muglad Basin, South Sudan: angiosperm spread and links to the Elaterates Province. Palynology 41: 547 – 578.

Corner, E. J. H. (1954). The evolution of tropical forest. In: J. S. Huxley, A. C. Hardy & E. B. Ford (eds), Evolution as a Process, pp. 34 – 46. George Allen and Unwin, London.

Corner, E. J. H. (1976). The Seeds of the Dicotyledons. Cambridge University Press, Cambridge.

Coward A. J., Mays, C., Patti, A. F., Stilwell, J. D., O’Dell, L. A. & Viegas, P. (2018). Taphonomy and chemotaxonomy of Eocene amber from southeastern Australia. Org. Geochem. 118: 103 – 115.

Crié, M. L. (1888). Recherches sur la Flore Pliocène de Java. Sammlungen des Geologischen Reichsmuseum in Leiden. Serie 1, Beiträge zur Geologie von Ost-Asians und Australiens 5: 1 – 21.

Curiale, J. A., Kyi, P., Collins, I. D., Din, A., Nyein, K., Nyunt, M. & Stuart, C. J. (1994). The central Myanmar (Burma) oil family — composition and implications for source. Org. Geochem. 22: 237 – 55.

Curran, L. M. (1994). The Ecology and Evolution of mast-fruiting in Bornean Dipterocarpaceae. Doctoral dissertation, Princeton University.

Curran, L. M. & Leighton, M. (2000). Vertebrate responses to spatiotemporal variation in seed production of mastfruiting Dipterocarpaceae. Ecol. Monogr. 70: 101 – 128.

Dayanandan, S., Ashton, P. S. & Primack, R. B. (1999). Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Amer. J. Bot. 86: 1182 – 1190.

Den Berger, L. G. (1923). Fossiele houtsoorten uit het Tertiair van Zuid Sumatra. Verh. K. Ned. Geol. Mijnbouwkd. Genoot., Geol. Ser. 7: 143 – 148.

Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T. E. V., Yue, Y., Shukla, A., Srivastava, G., Ali Li Khan, M., Bera, S. & Mehrotra, R. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45: 215 – 218.

Ducousso, M., Béna, G., Bourgeois, C., Buyck, B., Eyssartier, G., Vincelette, M., Rabevohitra, R., Randrihasipara, L., Dreyfus, B. & Prin, Y. (2004). The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago. Molec. Ecol. 13: 231 – 236.

Dutta, S., Tripathi, S. M., Mallick, M., Mathews, R. P., Greenwood, P. F., Rao, M. R. & Summons, R. E. (2011). Eocene out-of-India dispersal of Asian dipterocarps. Rev. Palaeobot. Palynol. 166: 63 – 8.

Ediriweera, S., Bandara, C., Woodbury, D. J., Mi, X.-C., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Ashton, M. S. (2020). Changes in tree structure, composition, and diversity of a mixed-dipterocarp rainforest over a 40-year period. Forest Ecol. Managem. 458 (2020): 117764.

Edwards, W. N. (1931). Dicotyledones (Ligna). Fossilium Catalogus, II. Plantae 17: 1 – 96.

Endlicher, S. L. (1840). Ordo CCXIII. Dipterocarpaceae. Genera Plantarum, pp. 1012 – 1014. Fr. Beck, Wien.

Fedorov, A. A. (1966). The structure of tropical rain forest and speciation in the humid tropics. J. Ecol. 54: 1 – 11.

Feng, X., Tang, B., Kodrul, T. M. & Jin, J. (2013). Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the late Eocene of South China and their phytogeographic and paleoclimatic implications. Amer. J. Bot. 100: 574 – 81.

Gamage, D. T., de Silva, M. P., Inomata, N., Yamazaki, T. & Szmidt, A. E. (2006). Comprehensive molecular phylogeny of the subfamily Dipterocarpoideae (Dipterocarpaceae) based on chloroplast DNA sequences. Genes Genet. Syst. 81: 1 – 12.

Gan, Y. Y., Robertson, F. W., Ashton, P. S., Soepadmo, E. & Lee, D. W. (1977). Genetic variation in wild populations of rain forest trees. Nature 269: 323 – 325.

Geyler, H. T. (1875). Über fossile Pflanzen von Borneo. Palaeontographica, Suppl. 3: 61 – 84.

Gilg, E. (1925). Dipterocarpaceae. In: A. E. Engler & K. A. Prantl (eds), Die Natürlichen Pflanzenfamilien 21: 237 – 269. W. Engelmann, Leipzig.

Gorsel, J. T. van, Lunt, P. & Morley, R. J. (2014). Introduction to Cenozoic biostratigraphy of Indonesia-SE Asia. Berita Sedimentologi 29: 6 – 40.

Guleria, J. S. (1992). Neogene vegetation of peninsular India. Palaeobotanist 40: 285 – 331.

Gunatilleke, I. A. U. N., Gunatilleke, C. V. S., Umantha, S. K. N., Bawa, K. S., Dayanandan, S., Dayanandan, B., Murawski, D. & Ashton, P. S., Undated (c. 1999). Reproductive Biology and Genetics of some Shorea (section Doona) Species in Sri Lankan Rain Forests: A Case for Long-term Research. Unpubl. research.

Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Ashton, P. S. (2017). South-west Sri Lanka: A floristic refugium in South Asia. Ceylon J. Sci. 46 (Special Issue): 65 – 78.

Gupta, K. M. (1935). A review of the genus Dipterocarpoxylon of Holden, with description of a new species D. holdeni from the Irrawaddy System of Burma. Proc. Indian Acad. Sci. 1: 633 – 639.

Gurusamy, V. & Kumarasamy, D. (2007). A new species of Shoreoxylon from the Cuddalore series, Tamil Nadu, India. Pl. Arch. 7: 165 – 167.

Hallé, F. & Ng, F. S. P. (1981). Crown construction of mature dipterocarp trees. Malaysian Forester 44: 222 – 233.

Hamilton, R., Hall, T., Stevenson, J. & Penny, D. (2019). Distinguishing the pollen of Dipterocarpaceae from the seasonally dry and moist tropics of south-east Asia using light microscopy. Rev. Palaeobot. Palynol. 263: 117 – 133.

Hamrick, J. L. & Murawski, D. A. (1990). The breeding structure of tropical tree populations. Pl. Spec. Biol. 5: 157 – 165.

Heaney, L. R. (1991). A synopsis of climatic and vegetational change in Southeast Asia. Climatic Change 19: 53 – 61.

Heckenhauer, J., Samuel, R., Ashton, P. S., Turner, B., Barfuss, M. H. J., Jang, T.-S., Temsch., E. M., McCann, J., Abu Salim, K., Attanayake, A. M. A. S. & Chase, M. W. (2017). Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Bot. J. Linn. Soc. 185: 1 – 26.

Heckenhauer, J., Samuel, R., Ashton, P. S., Abu Salim, K. & Paun, O. (2018). Phylogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae (Dipterocarpaceae). Molec. Phylogenet. Evol. 127: 1 – 13.

Heel, W. van (1966). Morphology of the androecium in Malvales. Blumea 13: 177 – 394.

Heer, O. (1874). Üeber fossile Pflanzen von Sumatra. Abh. Schweiz. Paläontol. Ges. 1: 1 – 19.

Heer, O. (1879). Beiträge zur fossilen Flora von Sumatra. Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss. 28: 1 – 22.

Heim, F. (1892). Recherches sur les Diptérocarpacées. PhD Dissertation. Faculté des Sciences de Paris, France.

Hubbell, S. P. (1979). Tree dispersion, abundance and diversity in a tropical dry forest. Science 203: 1299 – 1309.

Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton and Oxford.

Husson, L., Boucher, F. C., Sarr, A.-C., Sepulchre, P. & Cahyarini, S. Y. (2020). Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47: 843 – 853.

Jacques, F. M. B., Shi, G., Su, T. & Zhou, Z. (2015). A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino- Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216: 76 – 91.

Joshi, A. & Mehrotra, R. C. (2007). Megaremains from the Siwalik sediments of West and East Kameng Districts, Arunachal Pradesh. J. Geol. Soc. India 69: 1256 – 1266.

Kajita, T., Kamiya, K., Nakamura, K., Tachida, H., Wikneswari, R., Tsumura, Y., Yoshimaru, H. & Yamazaki, T. (1998). Molecular phylogeny of Dipterocarpaceae in Southeast Asia based on nucleotide sequences of matK, trnL Intron, and trnL-trnF intergenic spacer region in chloroplast DNA. Molec. Phylogenet. Evol. 10: 202 – 209.

Kamiya, K., Tachida, H. & Ichie, T. (undated). Testing ‘Isolation and Migration’ model among closely related species of Shorea (Dipterocarpaceae), a species-rich genus in Asian tropical forests. Unpubl. ms.

Kamiya, K., Harada, K., Ogino, K., Kajita, T., Yamazaki, T., Lee, H. S. & Ashton, P. S. (1998). Molecular phylogeny of dipterocarp species using nucleotide sequences of two non-coding regions in chloroplast DNA. Tropics 7: 195 – 207.

Kamiya, K., Gan, Y. Y., Lum, S. K. Y., Khoo, M. S., Chua, S. C. & Faizu, N. N. H. (2011). Morphological and molecular evidence of natural hybridization in Shorea (Dipterocarpaceae). Tree Genet. Genomes 7: 297 – 306.

Kamiya, K., Nanami, S., Kenzo, T., Yoneda, R., Diway, B., Chong, L., Azani, M. A., Majid, N. M., Lum, S. K. Y., Wong, K.-M. & Harada, K. (2012). Demographic history of Shorea curtisii (Dipterocarpaceae) inferred from chloroplast DNA sequence variations. Biotropica 44: 577 – 585.

Kapur, V. V., Das, D. B., Bajpai, S. & Prasad, G. V. R. (2017). First mammal of Gondwanan lineage in the early Eocene of India. Compt. Rend. Palevol 16: 721 – 737.

Kar, R. K. (1992). Stratigraphical implications of Teniary palynological succession in north-eastern and western India. Palaeobotanist 40: 336 – 344.

Kar, R. K., Handique, G. K., Kalita, C. K., Mandal, J., Sarkar, S., Kumar, M. & Gupta, A. (1994). Palynostratigraphical studies on subsurface Tertiary sediments in Upper Assam basin, India. Palaeobotanist 42: 183 – 198.

Kar, R. K. & Sharma, P. (2001). Palynostratigraphy of Late Palaeocene and early sediments of Rajasthan, India. Palaeontographica, Abt. B, Paläophytol. 256: 123 – 157.

Kaur, A., Ha, C. O., Jong, K., Sands, V. F., Chan, H. T., Soepadmo, E. & Ashton, P. S. (1978). Apomixis may be widespread among the trees of the climax rain forest. Nature 271: 440 – 442.

Kershaw, P. K., David, B., Tapper, N., Penny, D. & Brown, J. (2002). Bridging Wallace's Line: the environmental and cultural history and dynamics of the Australian-Southeast Asian region. Advances Geoecol. 34: 1 – 360.

Khan, M. A. & Bera, S. (2010). Record of fossil fruit wing of Shorea Roxb. from the Neogene of Arunachal Pradesh. Curr. Sci. 98: 1573 – 75.

Khan, M. A., Spicer, R. A., Spicer, T. E. V. & Bera, S. (2016). Occurrence of Shorea Roxburgh ex C. F. Gaertner (Dipterocarpaceae) in the Neogene Siwalik forests of eastern Himalaya and its biogeography during the Cenozoic of Southeast Asia. Rev. Palaeobot. Palynol. 233: 236 – 254.

Kieser, G. & Jan du Chene, R. E. (1979). Periretisyncolpites n. gen. & Tercissus Tschudy 1970. Grand pollen syncolpes du Maastrichtien du Senegal et du Nigeria. Rev. Esp. Micropaleontol. 11: 321 – 334.

Knoke, T. et al. [31 authors] (2020). Accounting for multiple ecosystem services in a simulation of land-use decisions: Does it reduce tropical deforestation? Global Change Biology 26: 2403 – 2420.

Kooyman, R. M., Morley, R. J., Crayn, D. M., Joyce, E. M., Rossetto, M., Slik, J. W. F., Strijk, J. S., Su, T., Yap, J.-Y. S. & Wilf, P. (2019). Origins and assembly of Malesian Rainforests. Annual Rev. Ecol. Evol. Syst. 50: 119 – 143.

Kostermans, A. J. G. H. (1978). Pakaraimaea (Dipterocarpaceae) Maguire and Ashton belongs to Tiliaceae and not Dipterocarpaceae. Taxon 27: 357 – 359.

Kostermans, A. J. G. H. (1981). The Ceylonese species of Balanocarpus Bedd. (Dipterocarpaceae). Bull. Mus. Natl. Hist. Nat. B, Adansonia 4: 173 – 177.

Kostermans, A. J. G. H. (1985). Family status for Monotoidae Gilg and Pakaraimoideae Ashton, Maguire & de Zeeuw. Taxon 34: 426 – 435.

Kostermans, A. J. G. H. (1987). The genera Cotylelobium Pierre and Sunaptea Griff. In: A. J. G. H. Kostermans (ed.), Proceedings of the Third Round Table Conference on Dipterocarpaceae. Samarinda, Kalimantan, pp. 603 – 627. United Nations Educational, Scientific and Cultural Organization, Regional Office for Science and Technology for Southeast Asia, Jakarta.

Kostermans, A. J. G. H. (1992). A Handbook of the Dipterocarpaceae of Sri Lanka. Wildlife Heritage Trust of Sri Lanka, Colombo.

Krausel, R. (1922a). Fossile Holzer aus dem Tertiar von Siid-Sumatra. Verh. Geol.- Mijnb. Gen. Nederland en Kol. 5: 231 – 287.

Krausel, R. (1922b). Ueber einen fossilen Baumstamm von Bolang (Java). Proc. Sect. Sci. Kon. Akad. Wetensch. Amsterdam 25: 9 – 15.

Kumar, M., Srivastava, G., Spicer, R. A., Spicer, T. E. V., Mehrotra, R. C. & Mehrotra, N. C., (2012). Sedimentology, palynostratigraphy and palynofacies of the late Oligocene Makum Coalfield, Assam, India: A window on lowland tropical vegetation during the most recent episode of significant global warmth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 342 – 343: 143 – 162.

Lakhanpal, R. N. (1970). Tertiary floras of India and their bearing on the historical geology of the region. Taxon 19: 675 – 694.

Lakhanpal, R. N. (1974). Geological history of the Dipterocarpaceae. In: R. N. Lakhanpal (ed.), Symposium on origin and phytogegraphy of angiosperms, pp. 30 – 39. Birbal Sahni Institute of Palaeobotany, Lucknow.

Laveine, J. P., Lemoigne, Y., Xingsus Li, Xiuyan Wu, Shanzhen Zhang, Ziuhu Zhao, Weiging Zhu & Jianan Zhu (1987). Paléogéographie de la Chine au Carbonifère à la lumière des données paléobotaniques par comparaison avec les assemblages carbonifères d.Europe occidentale. Compt. Rend. Acad. Sci. Paris, Sér. 3, Sci. Vie 304 (II) 8: 391 – 394.

Lemoigne, Y. (1978). Flores tertiaires de la haute vallee de l’Omo (Ethiopie). Paleontographica B 165 (4 – 6): 89 – 157.

Licht, A., Boura, A., De Franceschi, D., Ducrocq, S., Soe, A. N. & Jaeger, J. J. (2014). Fossil woods from the late middle Eocene Pondaung Formation, Myanmar. Rev. Palaeobot. Palynol. 202: 29 – 46.

MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton Monographs in Island Biogeography.

Maguire, B. P. C. & Ashton, P. S. (1977). Pakaraimoideae, Dipterocarpaceae of the western Hemisphere II. Systematic, phyletic and geographic considerations. Taxon 26: 343 – 368.

Mandal, J. & Rao, M. R. (2001). Taxonomic revision of tricolpate pollen from Indian Tertiary. Palaeobotanist 50: 341 – 368.

Mandang, Y. I & Kagemori, N. (2003). A Fossil Wood of Dipterocarpaceae from Pliocene Deposit in the West Region of Java Island, Indonesia. Bul. Penelitian Hasil Hutan 21: 259 – 275.

Mandang, Y. I & Martono, D. (1996). Wood fossil diversity in the west region of Java Island. Bul. Penelitian Hasil Hutan 14: 192 – 203.

Mandaokar, B. D. & Mukherjee, D. (2014). Palynostratigraphy of the Cuddalore Formstion (Early Miocene) of Panrutim Tamil Nadu, India. J. Palaeontol. Soc. India 59: 69 – 80.

Manokaran, N., LaFrankie, J. V., Kochummen, K. M., Quah, E. S., Klahn, J. E., Ashton, P. S. & Hubbell, S. P. (1992). Stand table and distribution of species in a fifty hectare research plot at Pasoh Forest Reserve. FRIM Research Data No. 1, Kepong.

Mansyursyah, A., Nugraha, S. & Hall, R. (2016). Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490: 191 – 209.

Maury-Lechon, G. (1979a). Conséquences taxonomiques de l’étude des caractères des fruits/germinations, embryons et plantules des Diptérocarpacées. In: G. Maury-Lechon (ed.), Dipterocarpaceae: taxonomie-phylogénie-ecologie. Mémoires du Muséum National d’Histoire Naturelle: First International Round Table on Dipterocarpaceae, pp. 81 – 106. Editions du Muséum, Paris.

Maury-Lechon, G. (1979b). Interprétation phylogénique des caractères des pollens, fruits germinations et plantules des Diptérocarpacées. In: G. Maury-Lechon (ed.), Dipterocarpaceae: taxonomie-phylogénie-ecologie. Mémoires du Muséum National d’Histoire Naturelle: First International Round Table on Dipterocarpaceae, pp. 139 – 144. Editions du Muséum, Paris.

Maury-Lechon, G. & Curtet, L. (1998). Biogeography and evolutionary systematics of Dipterocarpaceae. In: S. Appanah & J. M. Turnbull (eds), A Review of Dipterocarps: Taxonomy, Ecology and Silviculture, pp. 5 – 44. CIFOR, Bogor.

McKenna, M. C. (1973). Sweepstakes, filters, corridors, Noah's Arks, and Beached Viking Funeral Ships in palaeogeography. In: D. H. Tarling & S. K. Runcorn (eds), Implications of Continental Drift to the Earth Sciences, pp. 295 – 308. Academic Press, New York.

Medway, Lord (1972a). Phenology of a tropical rain forest in Malaya. Biol. J. Linn. Soc. 4: 117 – 146.

Medway, Lord (1972b). The Quaternary mammals of Malesia: a review. In: P. S. Ashton & H. M. Ashton (eds), The Quaternary Era in Malesia, ed. Geography Department University of Hull, Miscellaneous Series 13: 63 – 398.

Mehrotra, R. C., Shukla, A., Srivastava, G. & Tiwari, R. P. (2014). Miocene megaflora of peninsular India: present status and future prospects. Special Publ. Palaeontol. Soc. India 5: 283 – 290.

Meijaard, E. (2003). Mammals of Southeast Asian islands and their Late Pleistocene environments. J. Biogeogr. 30: 1245 – 57.

Meijer, W. (1963). Notes on Bornean Dipterocarpaceae. Act. Bot. Neerl. 12: 319 – 353.

Meijer, W. & Wood, G. H. S. (1964). Dipterocarps of Sabah (North Borneo). Sabah Forest Rec. 5. Sabah Forest Department, Sandakan.

Meijer, W. & Wood, G. H. S. (1976). Keys to dipterocarps of Sabah. BIOTROP, Bogor.

Merrill, E. D. (1923). Distribution of the Dipterocarpaceae. Origin and relationships of the Philippine flora and causes of the differences between the floras of eastern and western Malaysia. Philipp. J. Sci. 23: 1 – 32.

Morley, R. J. (1981). Development and vegetation dynamics of a lowland ombrogenous peat swamp in Kalimantan Tengah, Indonesia. J. Biogeogr. 8: 383 – 404.

Morley, R. J. (1998). Palynological evidence for Tertiary plant dispersals in the SE Asia region in relation to plate tectonics and climate. In: R. Hall & J. D. Holloway (eds), Biogeography and Geological Evolution of SE Asia, pp. 177 – 200. Backhuys Publishers, Leiden.

Morley, R. J. (2000). Origin and Evolution of Tropical Rain Forests. Wiley, New York.

Morley, R. J. (2012). A review of the Cenozoic palaeoclimate history of Southeast Asia. In: D. Gower, K. G. Johnson, B. R. Rosen, J. Richardson, L. Rüber & S. T. Williams (eds), Biotic Evolution and Environmental Change in Southeast Asia, pp. 79 – 114. Cambridge University Press, Cambridge.

Morley, R. J. (2018). Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34: 209 – 234.

Morley, R. J. & Flenley, J. R. (1987). Late Cainozoic vegetational and environmental changes in the Malay Archipelago. In: T. C. Whitmore (ed.), Biogeographical evolution of the Malay Archipelago, pp. 50 – 59. Oxford Monographs on Biogeography 4. Oxford Scientific Publications, Oxford.

Morley, R. J. & Kingdon, J. (2013). Africa’s environmental and climatic past. In: J. Kingdon, D. Happold, M. Hoffmann, T. Butynski, M. Happold & J. Kalina (eds), Mammals of Africa, Vol. 1: 43 – 56. Bloomsbury, London.

Morley, R. J. & Morley, H. P. (2010). Neogene climate history of the Makassar Straits with emphasis on the Attaka Field. Proceedings of the 34 th Indonesian Petroleum Association

Morley, R. J., & Morley, H. P. & Swiecicki, T. (2016). Mio-Pliocene Palaeogeography, uplands and river systems of the Sunda region based on mapping within a framework of VIM depositional cycles. Proc. Indon. Petroleum Assoc., May 2016.

Morley, R. J., Dung, B. V., Tung, N. T., Kullman, A. J., Bird, R. T., Kieu, N. V. & Chung, N. C. (2019). High-resolution Palaeogene sequence stratigraphic framework for the Cuu Long Basin, offshore Vietnam, driven by climate change and tectonics, established from sequence biostratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530: 113 – 135.

Moyersoen, B. (2006). Pakaraimaea dipterocarpacea is ectomycorrhizal, Indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol. 172: 753 – 762.

Muller, J. (1981). Fossil pollen records of extant angiosperms. Bot. Rev. (Lancaster) 47:1 – 142.

Murawski, D. A. (1995). Reproductive biology and genetics of tropical trees from a canopy perspective. In: M. D. Lowman & M. Nadkarni (eds), Forest Canopies, pp. 457 – 493. Academic Press.

Nilsson, S., Coetzee, J. & Grafstrom, E. (1996). On the origin of the Sarcolaenaceae with reference to pollen morphological evidence. Grana 35: 321 – 334.

Ohtani, M., Kondo, T., Tani, N., Ueno, S., Lee, L. S., Ng, K. K. S., Muhammad, N., Finkeldey, R., Na'iem, M., Indrioko, S., Kamiya, K., Harada, K., Diway, B., Khoo, E., Kawamura, K. & Tsumura, Y. (2013). Nuclear and chloroplast DNA phylogeography reveals Pleistocene divergence and subsequent secondary contact of two genetic lineages of the tropical rainforest tree species Shorea leprosula (Dipterocarpaceae) in South-East Asia. Molec. Ecol. 22: 2264 – 2279.

Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S. C. & Ashton, P. S. (2003). Pasoh: Ecology of a Lowland Rain Forest in South-east Asia. Springer.

Palmer, E. J. (1948). Hybrid Oaks of North America. J. Arnold Arbor. 29: 1 – 48.

Patnaik, R. (2015). Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: An appraisal in the light of new data. Quatern. Int. 371: 232 – 243.

Paul, S., Sharma, J., Singh, B. D., Saraswati, P. K. & Dutta, S. (2014). Early Eocene equatorial vegetation and depositional environment: Biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. Int. J. Coal Geol. 149: 77 – 92.

Peay, K. G., Kennedy, P. G., Davies, S. J., Tan, S. & Bruns, T. D. (2010). Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol. 185: 529 – 542.

Philippe, M., Boonchai, N., Ferguson, D. K., Jia, H. & Songtham, W. (2013). Giant trees from the Middle Pleistocene of Northern Thailand. Quatern. Science. Rev. 65: 1 – 4.

Poole, I. M. (1993). A dipterocarpaceous twig from the Eocene London Clay Formation of southern England. Special Pap. Palaeontol. 49: 155 – 63.

Potts, M. D, Ashton, P. S., Kaufman, L. S. & Plotkin, J. B. (2002). Habitat patterns in tropical rain forests: A comparison of 105 Plots in northwest Borneo. Ecology 83: 2782 – 2797.

Prasad, M. (2008). Angiospermous fossil leaves from the Siwalik foreland basins and their palaeoclimatic implications. Palaeobotanist 57: 177 – 215.

Prasad, M. & Dwivedi, H. D. (2008). Some plant megafossils from the sub-Himalayan zone (Middle Miocene) of western Nepal. J. Palaeontol. Soc. India 53: 51 – 64.

Prasad, M. & Guatam, S. (2016). Dipterocarpaceous macrofossils from Churia Group of Arjun Khola area, western Nepal and their phytogeographical and palaeoclimatical implications. Palaeobotanist 65: 247 – 270.

Prasad, M., Antal, J. S., Tripathi, P. P. & Pandey, V. K. (1999). Further contribution to the Siwalik flora from the Koilabas area, western Nepal. Palaeobotanist 48: 49 – 95.

Prasad, M., Farooqui, A., Tripathi, S. K. M., Garg, R. & Thakur, B. (2009). Evidence of Late Palaeocene–Early Eocene equatorial rain forest refugia in southern Western Ghats. J. Biosci. 34: 777 – 797.

Prasad, M., Utescher, T., Sharma, A., Singh, I. B., Garg, R., Gogoi, I., Srivastava, J., Uddandama, P. R. & Joachimski, M. M. (2018a). Low-latitude vegetation and climate dynamics at the Paleocene-Eocene transition — A study based on multiple proxies from the Jathang section in northeastern India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 497: 139 – 156.

Prasad, M., Farooqui, A., Murthy, S., Sarate, O. S. & Bajpai, S. (2018b). Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India. Cretaceous Res. 86: 186 – 98.

Quade, J. J., Cerling, T. E. & Bowman, J. R. (1989). Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342: 163 – 166.

Raes, N., Cannon, C. H., Hijmans, R. J., Piessens, T., Saw, L. G., van Welzen, P. C. & Slik, J. W. F. (2014). Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl. Acad. Sci. U.S.A. 111: 16790 – 16795.

Ridley, H. N. (1930). The Dispersal of Plants throughout the World. Reeve, Kent.

Rudra, A., Dutta, S. & Raju, S. V. (2017). The Paleogene vegetation and petroleum system in the tropics: A biomarker approach. Marine Petroleum Geol. 86: 38 – 51.

Rustichello de Pisa, C. (c. 1300). Livre des Merveilles du Monde. Old French, Venice.

Samant, B. (2000). Palynostratigraphy and age of the Bhavnagar lignite, Gujarat, India. Palaeobotanist 49: 101 – 118.

Samant, B. & Phadtare, N. R. (1997). Stratigraphic palynoflora of the Early Eocene Rajpardi lignite, Gujarat and the lower age limit of the Tarkeshwar Formation of South Cambay Basin, India. Palaeontographica, Abt. B, Paläophytol. 245: 1 – 108.

Schrank, E. (1987). Biostratigraphic importance of microfloras from the Late Cretaceous clastic series of northwestern Sudan. Cretaceous Res. 8: 29 – 42.

Schweitzer, H. (1958). Die Fossilen Dipterocarpaceen–Hölzer. Palaeontographica, Abt. B, Paläophytol. 105: 1 – 66.

Seward, A. C. (1935). Leaves of Dicotyledons from the Nubian Sandstone of Egypt. Ministry of Finance: Survey Department, Egypt, pp. 1 – 21.

Shenkin, A., Chandler, C. J., Boyd, D. S., Jackson, T., Disney, M., Majalap M., Nilus, R., Foody, G., Jamiluddin, bin Jami, Reynolds, G., Wilkes, P., Cutler, M. E. J., van der Heijden, G. M. F., Burslem, D. F. R. P., Coomes, D. A., Bentley, L. P. & Malhi, Y. (2019). The World's Tallest Tropical Tree in Three Dimensions. Frontiers For. Global Change 32: art. 2, pp. 1 – 5.

Shi, G. & Li, H. (2010). A fossil fruit wing of Dipterocarpus from the middle Miocene of Fujian, China and its palaeoclimatic significance. Rev. Palaeobot. Palynol. 162: 599 – 606.

Shi, G., Jacques, F. M. B. & Li, H. (2014). Winged fruits of Shorea (Dipterocarpaceae) from the Miocene of Southeast China: evidence for the northward extension of dipterocarps during the Mid-Miocene Climatic Optimum. Rev. Palaeobot. Palynol. 200: 97 – 107.

Shukla, A., Guleria, J. S. & Mehrotra, R. C. (2012). A fruit wing of Shorea Roxb. from the Early Miocene sediments of Kachchh, Gujarat and its bearing on palaeoclimatic interpretation. J. Earth Syst. Sci. 121: 195 – 201.

Shukla, A., Mehrotra, R. C. & Guleria, J. S. (2013). Emergence and extinction of Dipterocarpaceae in western India with reference to climate change: Fossil wood evidences. J. Earth Systems Sci. 122: 1373 – 1386.

Slik, J. W. F et al. [174 authors]. (2015). An estimate of the number of tropical tree species. Proc. Natl. Acad. Sci. USA 112: 7472 – 7477, and correction (2015) 112: E4628 –E4629.

Stopes, M. C. (1912). Petrifactions of the earliest European Angiosperms. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 203: 75 – 100.

Suhaida, M., Haron, M. W., Chua, L. S. L. & Chung, R. C. K. (2018). Floral phenology and pollination biology of Vatica yeechongii (Dipterocarpaceae). J. Tropic. Forest Sci. 30: 497 – 508.

Sutadiwiria, W., Yeftamikha, Hamdani, A. H., Andriana, Y., Haryanto, I. & Sunardi, E. (2017). Origin of oil seeps in West Sulawesi onshore, Indonesia: geochemical constraints and paleogeographic reconstruction of the source facies J. Geol. Sci. Appl. Geol. 2: 10 – 15.

Symington, C. F. (1933). Notes on Malayan Dipterocarpaceae. Gard. Bull. Singapore 7: 129 – 160.

Symington, C. F. (1934). Notes on Malayan Dipterocarpaceae, II. Gard. Bull. Singapore. 8: 1 – 40.

Symington, C. F., revised P. S. Ashton & S. Appanah. (2004). Forester’s Manual of Dipterocarps. Malayan Forest Records 16.

Takhtajan, A. (1966 [1967]). Systema et Phylogenia Magnoliophytorum. Komarov Botanical Institute of the Academy of Sciences, Leningrad.

Tilman, D. (1985). The resource–ratio hypothesis of plant succession. Amer. Naturalist 125: 827 – 852.

Tobler, A. (1923). Unsere palaiontologische Kenntnis von Sumatra. Eclogae Geol. Helv. 18: 313 – 342.

Toussaint, E. F. A., Hall, R., Monaghan, M. T., Sagata, K., Ibalim, S., Shaverdo, H. V., Volger, A. P., Poris, J. & Balke, M. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Commun. 5: 4001.

Trivedi, B. S. & Misra, J. P. (1980). Two new dipterocarpaceous woods from the Middle Siwalik of Kalagarh, Bijnor district, India. Palaeobotanist 26: 314 – 421.

Upchurch, G. R., Otto-Bliiesner, B. L. & Scotese, C. (1998). Vegetation-atmosphere interactions and their role in global warming during the latest Cretaceous. Philos. Trans., Ser. B 353: 97 – 112.

Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27: 1153 – 67.

Vozenin-Serra, C. (1981). Les structures Iigneuses Neogenes du Plateau de Linch (Sud- Vietnam). Palaeontographica, Abt. B, Paläophytol. 177: 136 – 161.

Wang, H., Dutta, S., Kelly, R. S., Rudra, A., Li, S., Zhang, Q.-Q., Zhang, Q.-Q., Wu, Y.-X., Caoa, M.-Z., Wang, B., Lie, J.-G. & Zhang, H.-C. (2018). Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet. Palaeoworld 27: 506 – 513.

Wolfe, J. A. (1969). An interpretation of Alaskan Tertiary floras. In: XI International Botanical Congress, Abstracts. United States Geological Survey, Menlo Park, California.

Wolfe, J. A. (1977). Paleogene floras from the Gulf of Alaska regions. United States Geological Survey Professional Paper. United States Geological Survey, Reston, VA.

Woodcock, D. W., Meyer, H. W. & Prado, Y. (2017). The Piedra Chamana fossil woods (Eocene, Peru). IAWA J. 38: 313 – 365.

Wurster, C. M., Bird, M. I., Bull, I. D., Creed, F., Bryant, C., Dungait, J. A. J. & Paz, V. (2010). Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proc. Natl. Acad. Sci. U.S.A. 107: 15508 – 15511.

Wyatt-Smith, J. (1965). Manual of Malayan Silviculture for Inland Forests. 2 vols. Malayan Forest Records No. 23. Forest Research Institute, Kepong.

Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 292 (5517): 686 – 693.



The greatest part of the material examined for this study is preserved in the collection of the Natural History Museum, London (BMNH), with significant studied material also in the Biosystematics Laboratory, Kyushu University, Fukuoka (BLKU). During this work, more than 8500 museum specimens were examined, and approximately 200 genitalia dissections prepared. In addition, research was undertaken on the extensive type material of these butterflies held in the BMNH collections to ensure that, as far as possible, the species group names applied are typified correctly and appropriate to employ.

Other material examined is located in the Entomological Laboratory, Faculty of Agriculture, Kyushu University (AGKU), Muséum National d’Histoire Naturelle, Paris (MNHN), Oxford University Museum of Natural History (OUMNH) and the Bishop Museum, Honolulu (BPBM).

Genitalia preparation and terminology

For the preparation of genitalia, either the entire abdomen or posterior half of the abdomen was removed, macerated in 10% aqueous KOH, and dissected in water using a binocular microscope. Except where noted, genitalia drawings were executed using a camera lucida from the entire genitalia or single parts submerged in a Petri dish of water, without any compression by glass slide and cover slip. For better contrast, some preparations were stained with Chlorazol Black. Terminology for male genitalia is based on Shirôzu's (1960: 1–10) extensive account, except that we use the term phallus instead of the more frequent ‘aedeagus’, as endorsed by Kristensen (2003) . Terminology for female genitalia mainly follows van Son (1949) , with some additions from Kusnezov (1915) and Yamauchi & Yata (2004) .

Wing venation terminology

The Comstock–Needham wing-vein and cell nomenclature adopted in the descriptions is based on Nielsen & Common (1991) and Smith & Vane-Wright (2001) . This terminology, together with the numerical system employed by Yata (1981) and many other lepidopterists (e.g. Corbet & Pendlebury, 1992 ), is illustrated in Fig. 1.

Wing venation of Appias (Catophaga) paulina, showing both the Comstock–Needham terminology and the numerical system (small ciphers) for the long veins. The short cross-veins closing the discal are notated according to common lepidopterological practice: upper, middle and lower discocelluar veins (udc, mdc, ldc). The cells are notated using the Comstock–Needham system only. Dotted lines in the discal cells indicate ‘folds’ (probable courses of proximal parts of veins M1–M3), and in CuA2 the lost vein CuB (which supposedly appears during early development but is later resorbed). Based in part on Smith & Vane-Wright (2001: 513 , fig. 7).


This study suggests that vertical sampling is important to obtain accurate measurements of the insect fauna in managed forest stands. The vertical distribution of insects was significantly different among the three management types studied. A greater proportion of the insect fauna was recovered close to the ground in clearcut stands than in selection and shelterwood stands. There was a greater decline in insect richness with increasing trap height in the clearcut stands than in the selection and shelterwood stands ( Table 1 Fig. 2) and traps above 5 m recovered a greater number of additional morphs in shelterwood and selection stands than in clearcut stands ( Table 2 Fig. 3). Furthermore, the individual insect morphs that showed differing height associations among the management systems and associations for the top traps in this study provide further evidence that sampling along a vertical gradient is important (Tables 3 and 4).

The detected variability in the vertical distribution of insects may reflect trap placement in relation to the canopy of the stands. Despite variation in canopy height the greatest abundance and diversity of insects has been found within and just above the canopy of the forest ( Sutton and Hudson 1980, Sutton 1983, Sutton et al. 1983, Kato et al. 1995). In our study, the top traps were above the canopy in clearcut stands, within the canopy in shelterwood stands, and just into the bottom edge of the canopy in selection stands. In clearcut stands, the paucity of additional morphs in the top traps and sharper decline in insect richness with increasing trap height suggests that the lower traps adequately sampled the canopy fauna. Conversely, the greater proportion of additional insect morphs collected in the top traps of shelterwood stands indicates the top traps were sampling the relatively taller shelterwood canopy. In the selection stands the top traps sampled only the bottom edge of the canopy. To compare the insect communities of forest stands with differences in stand structure vertical sampling must be done within comparable physiognomic classes of vegetation.

We thank J. Brisette, D. Debinski, F. Drummond, W. Haltemann, J. N. Jaros, and A. White for thoughtful reviews that significantly improved the manuscript. Considerable technical assistance was provided by the staff at the Penobscot Experimental Forest. Voucher and reference collections are stored at The University of Maine Insect Museum. This research was funded by USDA National Research Initiatives award no 96-35106-3725, USDA Forest Service cooperative agreement no. 23-938, and the University of Maine's Forest Ecosystem Research Project, Department of Biological Sciences, and Department of Wildlife Ecology. Maine Agriculture and forestry experiment station publication No. 2458.

Watch the video: Gypsy Moth: Everything you Need to Know in 30 Minutes (August 2022).